Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Front Cardiovasc Med ; 10: 1048903, 2023.
Article in English | MEDLINE | ID: covidwho-2261423

ABSTRACT

Background: Using bibliometric method to analyze the research status and development trend of extracorporeal membrane oxygenation (ECMO), we aim to provide clinicians, scientists, and stakeholders with the most up-to-date and comprehensive overview of ECMO research. Materials and methods: Using Excel and VOSviewer, the literature on ECMO was systematically analyzed regarding publication trends, journal source, foundation, countries, institutions, core authors, research hotspots, and market distribution. Results: There were five important time nodes in the research process of ECMO, including the success of the first ECMO operation, the establishment of ELSO, and the outbreak of influenza A/H1N1 and COVID-19. The R&D centers of ECMO were the United States, Germany, Japan, and Italy, and the attention to ECMO was gradually increasing in China. The products most used in the literature were from Maquet, Medtronic, and LivaNova. Medicine enterprises attached great importance to the funding of ECMO research. In recent years, the literature has mainly focused on the following aspects: the treatment of ARDS, the prevention of coagulation system-related complications, the application in neonatal and pediatric patients, mechanical circulatory support for cardiogenic shock, and ECPR and ECMO during the COVID-19 pandemic. Conclusion: The frequent epidemic occurrence of viral pneumonia and the technical advancement of ECMO in recent years have caused an increase in clinical applications. The hot spots of ECMO research are shown in the treatment of ARDS, mechanical circulatory support for cardiogenic shock, and the application during the COVID-19 pandemic.

2.
J Intensive Care Med ; 37(9): 1265-1273, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1833014

ABSTRACT

Purpose: The effect of high altitude ( ≥ 1500 m) and its potential association with mortality by COVID-19 remains controversial. We assessed the effect of high altitude on the survival/discharge of COVID-19 patients requiring intensive care unit (ICU) admission for mechanical ventilation compared to individuals treated at sea level. Methods: A retrospective cohort multi-center study of consecutive adults patients with a positive RT-PCR test for COVID-19 who were mechanically ventilated between March and November 2020. Data were collected from two sea-level hospitals and four high-altitude hospitals in Ecuador. The primary outcome was ICU and hospital survival/discharge. Survival analysis was conducted using semi-parametric Cox proportional hazards models. Results: Of the study population (n = 670), 35.2% were female with a mean age of 58.3 ± 12.6 years. On admission, high-altitude patients were more likely to be younger (57.2 vs. 60.5 years old), presented with less comorbidities such as hypertension (25.9% vs. 54.9% with p-value <.001) and diabetes mellitus (20.5% vs. 37.2% with p-value <.001), less probability of having a capillary refill time > 3 sec (13.7% vs. 30.1%, p-value <.001), and less severity-of-illness condition (APACHE II score, 17.5 ± 8.1 vs. 20 ± 8.2, p < .01). After adjusting for key confounders high altitude is associated with significant higher probabilities of ICU survival/discharge (HR: 1.74 [95% CI: 1.46-2.08]) and hospital survival/discharge (HR: 1.35 [95% CI: 1.18-1.55]) than patients treated at sea level. Conclusions: Patients treated at high altitude at any time point during the study period were 74% more likely to experience ICU survival/discharge and 35% more likely to experience hospital survival/discharge than to the sea-level group. Possible reasons for these findings are genetic and physiological adaptations due to exposure to chronic hypoxia.


Subject(s)
COVID-19 , Adult , Aged , Altitude , Cohort Studies , Female , Hospital Mortality , Humans , Intensive Care Units , Male , Middle Aged , Respiration, Artificial , Retrospective Studies
3.
Lancet Microbe ; 3(3): e193-e202, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1721237

ABSTRACT

BACKGROUND: Safe and effective vaccines are urgently needed to end the COVID-19 pandemic caused by SARS-CoV-2 infection. We aimed to assess the preliminary safety, tolerability, and immunogenicity of an mRNA vaccine ARCoV, which encodes the SARS-CoV-2 spike protein receptor-binding domain (RBD). METHODS: This single centre, double-blind, randomised, placebo-controlled, dose-escalation, phase 1 trial of ARCoV was conducted at Shulan (Hangzhou) hospital in Hangzhou, Zhejiang province, China. Healthy adults aged 18-59 years negative for SARS-CoV-2 infection were enrolled and randomly assigned using block randomisation to receive an intramuscular injection of vaccine or placebo. Vaccine doses were 5 µg, 10 µg, 15 µg, 20 µg, and 25 µg. The first six participants in each block were sentinels and along with the remaining 18 participants, were randomly assigned to groups (5:1). In block 1 sentinels were given the lowest vaccine dose and after a 4-day observation with confirmed safety analyses, the remaining 18 participants in the same dose group proceeded and sentinels in block 2 were given their first administration on a two-dose schedule, 28 days apart. All participants, investigators, and staff doing laboratory analyses were masked to treatment allocation. Humoral responses were assessed by measuring anti-SARS-CoV-2 RBD IgG using a standardised ELISA and neutralising antibodies using pseudovirus-based and live SARS-CoV-2 neutralisation assays. SARS-CoV-2 RBD-specific T-cell responses, including IFN-γ and IL-2 production, were assessed using an enzyme-linked immunospot (ELISpot) assay. The primary outcome for safety was incidence of adverse events or adverse reactions within 60 min, and at days 7, 14, and 28 after each vaccine dose. The secondary safety outcome was abnormal changes detected by laboratory tests at days 1, 4, 7, and 28 after each vaccine dose. For immunogenicity, the secondary outcome was humoral immune responses: titres of neutralising antibodies to live SARS-CoV-2, neutralising antibodies to pseudovirus, and RBD-specific IgG at baseline and 28 days after first vaccination and at days 7, 15, and 28 after second vaccination. The exploratory outcome was SARS-CoV-2-specific T-cell responses at 7 days after the first vaccination and at days 7 and 15 after the second vaccination. This trial is registered with www.chictr.org.cn (ChiCTR2000039212). FINDINGS: Between Oct 30 and Dec 2, 2020, 230 individuals were screened and 120 eligible participants were randomly assigned to receive five-dose levels of ARCoV or a placebo (20 per group). All participants received the first vaccination and 118 received the second dose. No serious adverse events were reported within 56 days after vaccination and the majority of adverse events were mild or moderate. Fever was the most common systemic adverse reaction (one [5%] of 20 in the 5 µg group, 13 [65%] of 20 in the 10 µg group, 17 [85%] of 20 in the 15 µg group, 19 [95%] of 20 in the 20 µg group, 16 [100%] of 16 in the 25 µg group; p<0·0001). The incidence of grade 3 systemic adverse events were none (0%) of 20 in the 5 µg group, three (15%) of 20 in the 10 µg group, six (30%) of 20 in the 15 µg group, seven (35%) of 20 in the 20 µg group, five (31%) of 16 in the 25 µg group, and none (0%) of 20 in the placebo group (p=0·0013). As expected, the majority of fever resolved in the first 2 days after vaccination for all groups. The incidence of solicited systemic adverse events was similar after administration of ARCoV as a first or second vaccination. Humoral immune responses including anti-RBD IgG and neutralising antibodies increased significantly 7 days after the second dose and peaked between 14 and 28 days thereafter. Specific T-cell response peaked between 7 and 14 days after full vaccination. 15 µg induced the highest titre of neutralising antibodies, which was about twofold more than the antibody titre of convalescent patients with COVID-19. INTERPRETATION: ARCoV was safe and well tolerated at all five doses. The acceptable safety profile, together with the induction of strong humoral and cellular immune responses, support further clinical testing of ARCoV at a large scale. FUNDING: National Key Research and Development Project of China, Academy of Medical Sciences China, National Natural Science Foundation China, and Chinese Academy of Medical Sciences.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , China , Humans , Immunogenicity, Vaccine , Immunoglobulin G , Pandemics/prevention & control , Spike Glycoprotein, Coronavirus , Vaccines, Synthetic , mRNA Vaccines
4.
JAMA Netw Open ; 4(8): e2119151, 2021 08 02.
Article in English | MEDLINE | ID: covidwho-1355856

ABSTRACT

Importance: Antiviral treatment of influenza is recommended for patients with influenza-like illness during periods of community cocirculation of influenza viruses and SARS-CoV-2; however, questions remain about which treatment is associated with the best outcomes and fewest adverse events. Objective: To compare the efficacy and safety of neuraminidase inhibitors and the endonuclease inhibitor for the treatment of seasonal influenza among healthy adults and children. Data Sources: Medline, Embase, and the Cochrane Register of Clinical Trials were searched from inception to January 2020 (the last search was updated in October 2020). Study Selection: Included studies were randomized clinical trials conducted among patients of all ages with influenza treated with neuraminidase inhibitors (ie, oseltamivir, peramivir, zanamivir, or laninamivir) or an endonuclease inhibitor (ie, baloxavir) compared with other active agents or placebo. Data Extraction and Synthesis: Two investigators identified studies and independently abstracted data. Frequentist network meta-analyses were performed; relative ranking of agents was conducted using P-score probabilities. Quality of evidence was assessed using the Grading of Recommendations, Assessment, Development and Evaluations criteria. Data were analyzed in October 2020. Main Outcomes and Measures: The time to alleviation of influenza symptoms (TTAS), complications of influenza, and adverse events (total adverse events, nausea, and vomiting). Results: A total of 26 trials were identified that investigated antiviral drugs at high or low doses; these trials included 11 897 participants, among whom 6294 (52.9%) were men and the mean (SD) age was 32.5 (16.9) years. Of all treatments comparing with placebo in efficacy outcomes, high-quality evidence indicated that zanamivir was associated with the shortest TTAS (hazard ratio, 0.67; 95% CI, 0.58-0.77), while baloxavir was associated with the lowest risk of influenza-related complications (risk ratio [RR], 0.51; 95% CI, 0.32-0.80) based on moderate-quality evidence. In safety outcomes, baloxavir was associated with the lowest risk of total adverse events (RR, 0.84; 95% CI, 0.74-0.96) compared with placebo based on moderate-quality evidence. There was no strong evidence of associations with risk of nausea or vomiting among all comparisons, except for 75 mg oseltamivir, which was associated with greater occurrence of nausea (RR, 1.82; 95% CI, 1.38-2.41) and vomiting (RR, 1.88; 95% CI, 1.47-2.41). Conclusions and Relevance: In this systematic review and network meta-analysis, all 4 antiviral agents assessed were associated with shortening TTAS; zanamivir was associated with the shortest TTAS, and baloxavir was associated with reduced rate of influenza-related complications.


Subject(s)
Antiviral Agents/therapeutic use , Dibenzothiepins/therapeutic use , Enzyme Inhibitors/therapeutic use , Influenza, Human/drug therapy , Morpholines/therapeutic use , Pyridones/therapeutic use , Triazines/therapeutic use , Zanamivir/therapeutic use , Adolescent , Adult , Child , Endonucleases/antagonists & inhibitors , Female , Humans , Influenza A virus/drug effects , Influenza, Human/virology , Male , Middle Aged , Network Meta-Analysis , Neuraminidase/antagonists & inhibitors , Randomized Controlled Trials as Topic , Seasons , Young Adult
5.
J Clin Lab Anal ; 35(1): e23657, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-938459

ABSTRACT

BACKGROUND: To evaluate the ability of peripheral blood inflammatory markers in predicating the typing of COVID-19, prognosis, and some differences between COVID-19 and influenza A patients. METHODS: Clinical data on 285 cases laboratory-confirmed as SARS-CoV-2 infection were obtained from a Wuhan local hospital's electronic medical records according to previously designed standardized data collection forms. Additional 446 Influenza A outpatients' hematologic data were enrolled for comparison. RESULTS: NLR, SII, RLR, PLR, HsCRP, and IL-6 were significant higher and LMR was lower in severe COVID-19 patients than in mild COVID-19 patients (p < .001). PLR and LMR were lower in the individuals with influenza A than those with COVID-19 (p < .01). COVID-19 patients with higher levels of NLR, SII, RLR, PLR, HsCRP, and IL-6 and lower LMR were significantly associated with the severe type. AUC of NLR (0.76) was larger while the specificity of IL-6 (86%) and sensitivity of HsCRP (89%) were higher than other inflammatory markers in predicating the typing of COVID-19. PT had obvious correlation with all the inflammatory markers except RPR. NLR showed positive correlations with AST, TP, BUN, CREA, PT, and D-dimer. Patients with high IL-6 levels have a relatively worse prognosis (HR = 2.30). CONCLUSION: Peripheral blood inflammatory markers reflected the intensity of inflammation and associated with severity of COVID-19.NLR was more useful to predict severity as well as IL-6 to predict prognosis of COVID-19. PLR and LMR were initially found to be higher in SARS-CoV-2 virus-infected group than in influenza A.


Subject(s)
Biomarkers/blood , COVID-19/blood , Inflammation/blood , Influenza, Human/blood , Aged , Blood Cell Count , COVID-19/complications , COVID-19/epidemiology , Comorbidity , Female , Humans , Interleukin-6/blood , Male , Middle Aged , Neutrophils , Prognosis , Retrospective Studies
6.
Med Sci Monit ; 26: e924582, 2020 Jul 12.
Article in English | MEDLINE | ID: covidwho-641223

ABSTRACT

In December 2019, an outbreak of coronavirus infection emerged in Wuhan, Hubei Province of China, which is now named Coronavirus Disease 2019 (COVID-19). The outbreak spread rapidly within mainland China and globally. This paper reviews the different imaging modalities used in the diagnosis and treatment process of COVID-19, such as chest radiography, computerized tomography (CT) scan, ultrasound examination, and positron emission tomography (PET/CT) scan. A chest radiograph is not recommended as a first-line imaging modality for COVID-19 infection due to its lack of sensitivity, especially in the early stages of infection. Chest CT imaging is reported to be a more reliable, rapid, and practical method for diagnosis of COVID-19, and it can assess the severity of the disease and follow up the disease time course. Ultrasound, on the other hand, is portable and involves no radiation, and thus can be used in critically ill patients to assess cardiorespiratory function, guide mechanical ventilation, and identify the presence of deep venous thrombosis and secondary pulmonary thromboembolism. Supplementary information can be provided by PET/CT. In the absence of vaccines and treatments for COVID-19, prompt diagnosis and appropriate treatment are essential. Therefore, it is important to exploit the advantages of different imaging modalities in the fight against COVID-19.


Subject(s)
Betacoronavirus , Clinical Laboratory Techniques , Coronavirus Infections/diagnostic imaging , Pandemics , Pneumonia, Viral/diagnostic imaging , Betacoronavirus/genetics , Betacoronavirus/isolation & purification , COVID-19 , COVID-19 Testing , China/epidemiology , Coronavirus Infections/complications , Coronavirus Infections/diagnosis , Coronavirus Infections/epidemiology , Diagnosis, Differential , Disease Progression , Follow-Up Studies , Humans , Lung/diagnostic imaging , Lung/pathology , Lung Diseases, Interstitial/diagnostic imaging , Lung Diseases, Interstitial/etiology , Pneumonia/diagnostic imaging , Pneumonia, Viral/complications , Pneumonia, Viral/epidemiology , Positron Emission Tomography Computed Tomography , Radiography, Thoracic , Respiratory Distress Syndrome/diagnostic imaging , Respiratory Distress Syndrome/etiology , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2 , Sensitivity and Specificity , Tomography, X-Ray Computed , Ultrasonography
7.
arxiv; 2020.
Preprint in English | PREPRINT-ARXIV | ID: ppzbmed-2006.16611v2

ABSTRACT

How to avoid a second wave of COVID-19 after reopening the economy is a pressing question. The extremely high basic reproductive number $R_0$ (5.7 to 6.4, shown in new studies) of SARS-CoV-2 further complicates the challenge. Here we assess effects of Social distancing 2.0, i.e. proximity alert (to maintain inter-personal distance) plus privacy-preserving contact tracing. To solve the dual task, we developed an open source mobile app. The app uses a Bluetooth-based, decentralized contact tracing platform over which the anonymous user ID cannot be linked by the government or a third party. Modelling results show that a 50\% adoption rate of Social distancing 2.0, with privacy-preserving contact tracing, would suffice to decrease the $R_0$ to less than 1 and prevent the resurgence of COVID-19 epidemic.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL